Geodesic laminations and noncommutative geometry

نویسنده

  • Igor Nikolaev
چکیده

Measured geodesic laminations is a remarkable abstraction (due to W. P. Thurston) of many otherwise unrelated phenomena occurring in differential geometry, complex analysis and geometric topology. In this article we focus on connections of geodesic laminations with the inductive limits of finite-dimensional semi-simple C∗-algebras (AF C∗-algebras). Our main result is a bijection between combinatorial presentation of such C∗-algebras (so-called Bratteli diagrams) and measured geodesic laminations on compact surfaces. This link appears helpful indeed as it provides insights to the Teichmüller spaces, Thurston’s theory of surface homeomorphisms, Stallings’ fibrations to the one side, and noncommutative (algebraic) geometry to the other.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geodesic laminations and Bratteli diagrams of AF C*-algebras

Geodesic laminations is a remarkable abstraction (due to W. P. Thurston) of many otherwise unrelated phenomena occurring in differential geometry, complex analysis and geometric topology. In this article we focus on connections of geodesic laminations with the inductive limits of finite-dimensional semi-simple C-algebras (AF C-algebras). Our main result is a bijection between combinatorial pres...

متن کامل

Linear structures on measured geodesic laminations

The space ML(F ) of measured geodesic laminations on a given compact closed hyperbolic surface F has a canonical linear structure arising in fact from different sources in 2-dimensional hyperbolic (eartquake theory) or complex projective (grafting) geometry as well in (2 + 1) Lorentzian one (globally hyperbolic spacetimes of constant curvature). We investigate this linear structure, by showing ...

متن کامل

Egorov’s theorem for transversally elliptic operators on foliated manifolds and noncommutative geodesic flow

The main result of the paper is Egorov’s theorem for transversally elliptic operators on compact foliated manifolds. This theorem is applied to describe the noncommutative geodesic flow in noncommutative geometry of Riemannian foliations.

متن کامل

Thurston norm revisited

We study noncommutative C∗-algebras arising in geometric topology. Our object are Thurston’s norms on the second homology of Stallings’ fibrations. It is shown that Thurston’s norm is a matter of pure algebra, if one looks at the Bratteli diagram of an AF C∗-algebra attached to measured geodesic laminations on a compact surface of genus greater or equal to 2. This approach leads to computationa...

متن کامل

Asymptotics of Weil-Petersson geodesics II: bounded geometry and unbounded entropy

We use ending laminations for Weil-Petersson geodesics to establish that bounded geometry is equivalent to bounded combinatorics for WeilPetersson geodesic segments, rays, and lines. Further, a more general notion of non-annular bounded combinatorics, which allows arbitrarily large Dehn-twisting, corresponds to an equivalent condition for Weil-Petersson geodesics. As an application, we show the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009